出 处:《Hepatobiliary & Pancreatic Diseases International》2014年第1期65-73,共9页国际肝胆胰疾病杂志(英文版)
摘 要:BACKGROUND: Statins are suggested to preserve gallbladder function by suppressing pro-inflammatory cytokines and preventing cholesterol accumulation in gallbladder epithelial cells. They also affect cross-talk among the nuclear hormone receptors that regulate cholesterol-bile acid metabolism in the nuclei of hepatocytes. However, there is controversy over whether or how statins change the expression of peroxisome proliferator-activated receptor(PPAR)α, PPARγ, liver X receptor α(LXRα), farnesoid X receptor(FXR), ABCG5, ABCG8, and 7α-hydroxylase(CYP7A1) which are directly involved in the cholesterol saturation index in bile. METHODS: Human Hep3B cells were cultured on dishes. MTT assays were performed to determine the appropriate concentrations of reagents to be used. The protein expression of PPARα and PPARγ was measured by Western blotting analysis, and the mRNA expression of LXRα, FXR, ABCG5, ABCG8 and CYP7A1 was estimated by RT-PCR. RESULTS: In cultured Hep3B cells, pravastatin activated PPARα and PPARγ protein expression, induced stronger expression of PPARγ than that of PPARα, increased LXRα mRNA expression, activated ABCG5 and ABCG8 mRNA expression mediated by FXR as well as LXRα, enhanced FXR mRNA expression, and increased CYP7A1 mRNA expression mediated by the PPARγ and LXRα pathways, together or independently. CONCLUSION: Our data suggested that pravastatin prevents cholesterol gallstone diseases via the increase of FXR, LXRαand CYP7A1 in human hepatocytes.BACKGROUND: Statins are suggested to preserve gallbladder function by suppressing pro-inflammatory cytokines and preventing cholesterol accumulation in gallbladder epithelial cells. They also affect cross-talk among the nuclear hormone receptors that regulate cholesterol-bile acid metabolism in the nuclei of hepatocytes. However, there is controversy over whether or how statins change the expression of peroxisome proliferator-activated receptor(PPAR)α, PPARγ, liver X receptor α(LXRα), farnesoid X receptor(FXR), ABCG5, ABCG8, and 7α-hydroxylase(CYP7A1) which are directly involved in the cholesterol saturation index in bile. METHODS: Human Hep3B cells were cultured on dishes. MTT assays were performed to determine the appropriate concentrations of reagents to be used. The protein expression of PPARα and PPARγ was measured by Western blotting analysis, and the mRNA expression of LXRα, FXR, ABCG5, ABCG8 and CYP7A1 was estimated by RT-PCR. RESULTS: In cultured Hep3B cells, pravastatin activated PPARα and PPARγ protein expression, induced stronger expression of PPARγ than that of PPARα, increased LXRα mRNA expression, activated ABCG5 and ABCG8 mRNA expression mediated by FXR as well as LXRα, enhanced FXR mRNA expression, and increased CYP7A1 mRNA expression mediated by the PPARγ and LXRα pathways, together or independently. CONCLUSION: Our data suggested that pravastatin prevents cholesterol gallstone diseases via the increase of FXR, LXRαand CYP7A1 in human hepatocytes.
关 键 词:PRAVASTATIN PPARΓ liver X receptor α farnesoid X receptor gallstone disease
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...