检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]清华大学数学系,北京100084 [2]山西师范大学数学与计算机学院
出 处:《数学年刊(A辑)》2004年第4期437-444,共8页Chinese Annals of Mathematics
基 金:国家自然科学基金(No.10071046);山西省自然科学基金(No.981009);山西省青年科学基金;中国博士后科学基金
摘 要:设A和B是含单位元的C~*代数,s∈A和t∈B是可逆自伴元,对任意的x∈A及z∈B,定义x^+=s^(-1)x~*s,z^+=t^(-1)z~*t。假定A是实秩零的并且Φ:A→B是有界线性满射。证明了对任意的 都成立的充要条件是Φ(1)可逆,Φ(1)^+Φ(1)=Φ(1)Φ(1)^+∈Z(B)(B的中心),并且存在从A到B上的满+同态Ψ,使得对所有的x∈A都有Φ(x)=Φ(1)Ψ(x)成立。对于一般C~*代数上保正交性的线性映射Φ,在假定Φ(1)可逆的条件下,也得到类似的结果。Let A and B be unital C~*-algebras, s ∈A and t ∈ B be invertible self-adjoint elements. For every x ∈ A and z ∈B, define x^+=s^(-1)x~*s and z^+=t^(-1)z~*t. Assume that A is of real rank zero and φ: A→B is a bounded linear surjection. This paper shows that, x^+y=0 φ(x)^+φ(y)=0 and xy^+=0 φ(x)φ(y)^+=0 for any x, y ∈ A, if and only if φ(1) is invertible, φ(1)^+φ(1)=φ(1)φ(1)^+ ∈(B) (the center of B) and there exists a surjective +-homomorphism ψ(i.e., ψ is a homomorphism and ψ(x^+)=ψ(x)^+, x ∈A) from A onto B such that φ(x)=φ(1)ψ(x) for all x ∈A. For general C~*-algebra cases, a similar result is obtained for orthogonality preservers under an additional assumption that φ(1) is invertible.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249