检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《北京化工大学学报(自然科学版)》2014年第1期111-116,共6页Journal of Beijing University of Chemical Technology(Natural Science Edition)
基 金:国家自然科学基金(71171012)
摘 要:选取上海证券交易所企业债和国债月度数据,利用遗传算法对静态利率期限结构NSM参数模型进行求解,进而拟合较为精确的企业债和国债的利率期限结构,据此计算出企业债的信用价差。数据一部分作为样本内拟合区间,另外一部分作为样本外预测区间以检查模型的预测精度。通过建立自ARMA样本外预测模型和VAR样本外预测模型分别对我国债券市场信用价差进行预测,最后比较两种模型的预测精度。结果表明VAR模型对于信用价差短期预测较为准确,而ARMA模型对于较长期预测较为准确。In order to study China's bond market,this paper selects the monthly transaction data of the Shanghai Stock Exchange and by using the NSM model,combined with a genetic algorithm,the interest rate term structures of government bonds and corporate bonds are obtained along with the credit spread which is the difference between the two interest rate term structures. Part of the data was taken as the fitting sample,and the remaining part of the data was taken as an out-forecasting sample to check the accuracy of predictions made using the model. The ARMA and VAR out-forecasting models have been established in order to forecast China's bond market credit spreads,and the precisions of the two models have been compared. The results show that the VAR model is more accurate for short-term forecasts,and the ARMA model is more accurate for longer-term forecasts.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222