检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]北京化工大学信息科学与技术学院,北京100029
出 处:《北京化工大学学报(自然科学版)》2014年第2期81-86,共6页Journal of Beijing University of Chemical Technology(Natural Science Edition)
基 金:国家自然科学基金(61240047)
摘 要:提出了一种基于核独立成分分析(KICA)的发酵过程在线监测方法,该方法结合了发酵过程数据的特点,采用了一种新的过程监测指标Us2,对发酵过程数据各时刻独立分量与该时刻所有批次独立分量均值的偏差信息进行特征提取,具有较强的抗干扰能力。青霉素发酵检测的实验结果表明,采用新监测指标的发酵过程监测方法能更好的识别较小的故障,降低漏报率,提高发酵过程在线监测的准确性。A fermentation process monitoring method based on kernel independent component analysis(KICA) is proposed,and the method is combined with the characteristics of batch process data with a new indicator being used.The indicator effectively extracts information about the deviation between independent components at each moment and their mean in the intermittent process,which overcomes the effects of disturbance more effectively than traditional indicators.The results of penicillin fermentation detection experiments show that fermentation process monitoring based on KICA with the new index is very effective.This method has a greater ability to detect small faults than traditional methods and a low false alarm rate,as well as giving improved accuracy during the monitoring process.
关 键 词:发酵过程监测 核独立成分分析 监测指标 青霉素模型
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222