检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:汤蓉[1,2] 唐常杰[1] 徐开阔[2] 左劼[1] 李红军[3]
机构地区:[1]四川大学计算机学院,四川成都610065 [2]成都信息工程学院计算机学院,四川成都610225 [3]成都理工大学信息科学与技术学院,四川成都610059
出 处:《四川大学学报(工程科学版)》2012年第S1期138-144,共7页Journal of Sichuan University (Engineering Science Edition)
基 金:国家自然科学基金资助项目(60773169);国家"十一五"科技支撑计划资助项目(2006BAI05A01)
摘 要:在无先验知识的前提下,复杂网络聚簇需确定簇数并精确地将节点分配到其所属簇,而大部分传统聚簇方法无法自动确定簇数。为解决这一问题,结合GEP和信息论聚类框架,提出了复杂网络自动聚簇算法——AutoC-NC-GEP。算法为复杂网络聚簇建立了GEP结构模型,设计了有效的遗传算子,提出了"不完全聚簇划分"概念,并分别以Map Eqation和Modularity两种不同的网络社团结构量化函数为适应度函数,使用真实网络对算法的聚簇性能进行了测试。实验结果表明,在没有先验知识的前提下,AutoCNC-GEP算法不仅能正确解析网络的社团数量,还可以自动将节点精确地分配到其所属社团中,从而获得网络的最佳社团结构。在无先验知识的前提下,复杂网络聚簇需确定簇数并精确地将节点分配到其所属簇,而大部分传统聚簇方法无法自动确定簇数。为解决这一问题,结合GEP和信息论聚类框架,提出了复杂网络自动聚簇算法——AutoC-NC-GEP。算法为复杂网络聚簇建立了GEP结构模型,设计了有效的遗传算子,提出了'不完全聚簇划分'概念,并分别以Map Eqation和Modularity两种不同的网络社团结构量化函数为适应度函数,使用真实网络对算法的聚簇性能进行了测试。实验结果表明,在没有先验知识的前提下,AutoCNC-GEP算法不仅能正确解析网络的社团数量,还可以自动将节点精确地分配到其所属社团中,从而获得网络的最佳社团结构。
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.129.209.87