检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《系统工程理论与实践》2011年第S2期13-18,共6页Systems Engineering-Theory & Practice
基 金:国家自然科学基金(70771007);中央高校基本科研业务费专项资金(FRF-TP-10-006B)
摘 要:高维数据聚类是数据挖掘领域的重要研究课题,大规模高维数据聚类研究非常具有挑战性.针对高效的CABOSFV高维数据聚类算法,采用并行计算模式提高其大规模数据的处理能力,提出基于稀疏指数排序的高维数据并行聚类算法P-CABOSFV.该算法根据高维数据稀疏指数排序进行分割点选择实现数据划分,将数据分配到多个计算节点同时处理聚类任务,再基于集合稀疏特征差异度聚类结果合并策略将各计算节点的聚类结果合并得到最终聚类结果.UCI数据集和计算机合成数据集实验表明:高维数据并行聚类算法P-CABOSFV聚类质量良好,具有很强的数据规模和数据维度可扩展性,是有效可行的.高维数据聚类是数据挖掘领域的重要研究课题,大规模高维数据聚类研究非常具有挑战性.针对高效的CABOSFV高维数据聚类算法,采用并行计算模式提高其大规模数据的处理能力,提出基于稀疏指数排序的高维数据并行聚类算法P-CABOSFV.该算法根据高维数据稀疏指数排序进行分割点选择实现数据划分,将数据分配到多个计算节点同时处理聚类任务,再基于集合稀疏特征差异度聚类结果合并策略将各计算节点的聚类结果合并得到最终聚类结果.UCI数据集和计算机合成数据集实验表明:高维数据并行聚类算法P-CABOSFV聚类质量良好,具有很强的数据规模和数据维度可扩展性,是有效可行的.
分 类 号:N94[自然科学总论—系统科学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249