检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]吉林大学应用技术学院,长春130022 [2]吉林大学机械科学与工程学院,长春130025
出 处:《哈尔滨工业大学学报》2011年第S1期248-252,共5页Journal of Harbin Institute of Technology
基 金:教育部博士学科点基金项目(20060183063)
摘 要:无网格法是基于移动最小二乘理论构造场函数,构造场函数中权函数和基底函数对无网格法的计算精度有很大影响.为了比较基底函数对无网格法计算精度的影响,本文利用Schmidt正交化方法构造出正交多项式基底函数.运用该正交多项式基和幂函数多项式基,选取了样条型权函数分别构造位移场函数,对弹性结构动力学基本方程进行无网格化离散,得到梁结构无网格动力学方程.采用罚函数方法满足本征边界条件,求解并得到了梁结构固有频率和模态的两种无网格解,与解析解进行了比较和精度分析,并结合均匀悬臂梁结构验证了得出的结论.无网格法是基于移动最小二乘理论构造场函数,构造场函数中权函数和基底函数对无网格法的计算精度有很大影响.为了比较基底函数对无网格法计算精度的影响,本文利用Schmidt正交化方法构造出正交多项式基底函数.运用该正交多项式基和幂函数多项式基,选取了样条型权函数分别构造位移场函数,对弹性结构动力学基本方程进行无网格化离散,得到梁结构无网格动力学方程.采用罚函数方法满足本征边界条件,求解并得到了梁结构固有频率和模态的两种无网格解,与解析解进行了比较和精度分析,并结合均匀悬臂梁结构验证了得出的结论.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.12