检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘志东[1,2] 罗燕[3] 林江莉[1] 廖晓红[4]
机构地区:[1]四川大学生物医学工程系,四川成都610065 [2]阿坝师范高等专科学校电子信息工程系,四川成都611741 [3]四川大学华西医院,四川成都610041 [4]仁寿县人民医院超声科,四川仁寿620500
出 处:《四川大学学报(工程科学版)》2011年第S1期160-164,共5页Journal of Sichuan University (Engineering Science Edition)
基 金:国家自然科学基金资助项目(3087071530970781);教育部博士点基金资助项目(20100181110002)
摘 要:采用时域、频域分析方法和模式识别技术基于肝脏超声射频信号,探讨一种新的脂肪肝分级量化方法,尤其针对目前较难鉴别的轻度脂肪肝。选取肝脏部位感兴趣区域内的超声射频信号,然后利用时域和频域分析技术,提取多个特征量,如期望值、低频小波系数均值和小波模极大值均值。并采用BP神经网络进行脂肪肝识别量化。实验结果表明,期望值、低频小波系数均值和小波模极大值可以有效地描述超声射频信号特征,其中正常肝识别率达90.0%,轻度脂肪肝识别率达86.7%,中度脂肪肝识别率达83.3%,重度脂肪肝识别率达90.0%。实验证明超声射频信号在脂肪肝的诊断中是有意义,为计算机辅助诊断脂肪肝提供了一个新的方向。采用时域、频域分析方法和模式识别技术基于肝脏超声射频信号,探讨一种新的脂肪肝分级量化方法,尤其针对目前较难鉴别的轻度脂肪肝。选取肝脏部位感兴趣区域内的超声射频信号,然后利用时域和频域分析技术,提取多个特征量,如期望值、低频小波系数均值和小波模极大值均值。并采用BP神经网络进行脂肪肝识别量化。实验结果表明,期望值、低频小波系数均值和小波模极大值可以有效地描述超声射频信号特征,其中正常肝识别率达90.0%,轻度脂肪肝识别率达86.7%,中度脂肪肝识别率达83.3%,重度脂肪肝识别率达90.0%。实验证明超声射频信号在脂肪肝的诊断中是有意义,为计算机辅助诊断脂肪肝提供了一个新的方向。
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249