检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:晋美次旦
机构地区:[1]西藏自治区水文水资源勘测局,西藏拉萨850000
出 处:《水利信息化》2011年第S1期33-38,共6页Water Resources Informatization
摘 要:在比较各种水文预报方法的基础上,研究利用一种改进的支持向量机算法(SVM)对水文进行预测。阐述支持向量机理论的理论基础和原理,针对缺陷,提出基于人工鱼群优化的支持向量机算法(AFSVM),介绍人工鱼群算法基本理论和AFSVM,建立基于人工鱼群优化的支持向量机的拉萨河水文预报系统模型,并与标准的支持向量机预测模型进行对比。实验结果表明,AFSVM与标准SVM模型的预测精度差不多,AFSVM的训练速度优于标准SVM训练速度。在比较各种水文预报方法的基础上,研究利用一种改进的支持向量机算法(SVM)对水文进行预测。阐述支持向量机理论的理论基础和原理,针对缺陷,提出基于人工鱼群优化的支持向量机算法(AFSVM),介绍人工鱼群算法基本理论和AFSVM,建立基于人工鱼群优化的支持向量机的拉萨河水文预报系统模型,并与标准的支持向量机预测模型进行对比。实验结果表明,AFSVM与标准SVM模型的预测精度差不多,AFSVM的训练速度优于标准SVM训练速度。
分 类 号:TV12[水利工程—水文学及水资源]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49