检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]清华大学航天航空学院工程力学系,北京100084 [2]AML清华大学航天航空学院,北京100084 [3]中国农业大学土木水利学院,北京100084
出 处:《固体力学学报》2010年第S1期156-163,共8页Chinese Journal of Solid Mechanics
基 金:国家自然科学基金(10872108;10876100);教育部新世纪优秀人才支持计划(NCET-07-0477);国家重点基础研究发展计划(973计划;2010CB832701)资助
摘 要:论文给出一种简单的高性能带旋转自由度4结点四边形平面单元.该单元的理论基础与卞学鐄先生首个杂交应力元相似,也从最小余能原理出发,无需单元内部位移场.但是应力场试函数采用Ariy应力函数的基本解析解(基于直角坐标的多项式),并强调其对坐标的对称和完备性.这样假设的应力场可以同时满足平衡和协调方程,因而更加合理.而单元边界位移则采用著名的Allman模式(采用局部坐标),即考虑结点转动自由度的二次协调位移.与其他同类单元相比,本文单元对位移和应力展现出更高的精度,特别是应力解答尤其突出.更有趣的是,单元对网格畸变非常不敏感,即使单元退化为三角形和凹四边形,仍然能保持较高的计算精度.此外,单元没有方向依赖性等缺点.论文给出一种简单的高性能带旋转自由度4结点四边形平面单元.该单元的理论基础与卞学鐄先生首个杂交应力元相似,也从最小余能原理出发,无需单元内部位移场.但是应力场试函数采用Ariy应力函数的基本解析解(基于直角坐标的多项式),并强调其对坐标的对称和完备性.这样假设的应力场可以同时满足平衡和协调方程,因而更加合理.而单元边界位移则采用著名的Allman模式(采用局部坐标),即考虑结点转动自由度的二次协调位移.与其他同类单元相比,本文单元对位移和应力展现出更高的精度,特别是应力解答尤其突出.更有趣的是,单元对网格畸变非常不敏感,即使单元退化为三角形和凹四边形,仍然能保持较高的计算精度.此外,单元没有方向依赖性等缺点.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.221.185.190