检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:SZE Kam Yim
机构地区:[1]Department of Mechanical Engineering,The University of Hong Kong
出 处:《Science China(Technological Sciences)》2010年第3期692-702,共11页中国科学(技术科学英文版)
基 金:supported by the National Natural Science Foundation of China (Grant Nos.10672193, 10972240);Fu Lan Scholarship of Sun Yat-sen University,and the University of Hong Kong (CRGC grant)
摘 要:The hyperbolic Lindstedt-Poincaré method is applied to determine the homoclinic and heteroclinic solutions of cubic strongly nonlinear oscillators of the form x + c1 x + c3 x 3= ε f (μ,x,x).In the method,the hyperbolic functions are employed instead of the periodic functions in the Lindstedt-Poincaré procedure.Critical value of parameter μ under which there exists homoclinic or heteroclinic orbit can be determined by the perturbation procedure.Typical applications are studied in detail.To illustrate the accuracy of the present method,its predictions are compared with those of Runge-Kutta method.The hyperbolic Lindstedt-Poincaré method is applied to determine the homoclinic and heteroclinic solutions of cubic strongly nonlinear oscillators of the form x + c1 x + c3 x 3= ε f (μ,x,x).In the method,the hyperbolic functions are employed instead of the periodic functions in the Lindstedt-Poincaré procedure.Critical value of parameter μ under which there exists homoclinic or heteroclinic orbit can be determined by the perturbation procedure.Typical applications are studied in detail.To illustrate the accuracy of the present method,its predictions are compared with those of Runge-Kutta method.
关 键 词:Lindstedt-Poincaré METHOD nonlinear AUTONOMOUS oscillator HOMOCLINIC ORBIT HETEROCLINIC ORBIT
分 类 号:TN752[电子电信—电路与系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.38