检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]School of Mathematical Science,Tianjin Normal University,Tianjin 300387,China [2]College of Chemistry and Life Science,Tianjin Normal University,Tianjin 300387,China
出 处:《Science China Mathematics》2010年第7期1837-1848,共12页中国科学:数学(英文版)
基 金:supported by National Natural Science Foundation of China (Grant No.10471010)
摘 要:For 1≤ p 【 ∞, firstly we prove that for an arbitrary set of distinct nodes in [-1, 1], it is impossible that the errors of the Hermite-Fejr interpolation approximation in L p -norm are weakly equivalent to the corresponding errors of the best polynomial approximation for all continuous functions on [-1, 1]. Secondly, on the ground of probability theory, we discuss the p-average errors of Hermite-Fejr interpolation sequence based on the extended Chebyshev nodes of the second kind on the Wiener space. By our results we know that for 1≤ p 【 ∞ and 2≤ q 【 ∞, the p-average errors of Hermite-Fejr interpolation approximation sequence based on the extended Chebyshev nodes of the second kind are weakly equivalent to the p-average errors of the corresponding best polynomial approximation sequence for L q -norm approximation. In comparison with these results, we discuss the p-average errors of Hermite-Fejr interpolation approximation sequence based on the Chebyshev nodes of the second kind and the p-average errors of the well-known Bernstein polynomial approximation sequence on the Wiener space.For 1≤ p < ∞, firstly we prove that for an arbitrary set of distinct nodes in [-1, 1], it is impossible that the errors of the Hermite-Fejr interpolation approximation in L p -norm are weakly equivalent to the corresponding errors of the best polynomial approximation for all continuous functions on [-1, 1]. Secondly, on the ground of probability theory, we discuss the p-average errors of Hermite-Fejr interpolation sequence based on the extended Chebyshev nodes of the second kind on the Wiener space. By our results we know that for 1≤ p < ∞ and 2≤ q < ∞, the p-average errors of Hermite-Fejr interpolation approximation sequence based on the extended Chebyshev nodes of the second kind are weakly equivalent to the p-average errors of the corresponding best polynomial approximation sequence for L q -norm approximation. In comparison with these results, we discuss the p-average errors of Hermite-Fejr interpolation approximation sequence based on the Chebyshev nodes of the second kind and the p-average errors of the well-known Bernstein polynomial approximation sequence on the Wiener space.
关 键 词:Chebyshev polynomial Hermite-Fejr interpolation L p-norm Wiener space
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.225