Note on the number of integral ideals in Galois extensions  被引量:7

Note on the number of integral ideals in Galois extensions

在线阅读下载全文

作  者:L GuangShi1,& WANG YongHui2 1School of Mathematics,Shandong University,Jinan 250100,China 2Department of Mathematics,Capital Normal University,Beijing 100048,China 

出  处:《Science China Mathematics》2010年第9期2417-2424,共8页中国科学:数学(英文版)

基  金:supported in part by National Natural Science Foundation of China(Grant No.10701048);Natural Science Foundation of Shandong Province (Grant No.ZR2009AM007);Independent Innovation Foundation of Shandong University;supported in part by National Basic Research Program of China (973 Program) (Grant No.2007CB807902);National Natural Science Foundation of China (Grant No.10601034)

摘  要:Let K be an algebraic number field of finite degree over the rational filed Q.Let ak be the number of integral ideals in K with norm k.In this paper we study the l-th integral power sum of ak,i.e.,∑k≤ x akl(l = 2,3,...).We are able to improve the classical result of Chandrasekharan and Good.As an application we consider the number of solutions of polynomial congruences.Let K be an algebraic number field of finite degree over the rational filed Q.Let ak be the number of integral ideals in K with norm k.In this paper we study the l-th integral power sum of ak,i.e.,∑k≤ x akl(l = 2,3,...).We are able to improve the classical result of Chandrasekharan and Good.As an application we consider the number of solutions of polynomial congruences.

关 键 词:DEDEKIND ZETA-FUNCTION INTEGRAL IDEAL CONGRUENCES 

分 类 号:O172.2[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象