Nonsingularity in second-order cone programming via the smoothing metric projector  被引量:1

Nonsingularity in second-order cone programming via the smoothing metric projector

在线阅读下载全文

作  者:WANG Yun 1,& ZHANG LiWei 2 1 College of Information Sciences and Engineering,Shandong Agricultural University,Tai’an 271018,China 2 Department of Applied Mathematics,Dalian University of Technology,Dalian 116024,China 

出  处:《Science China Mathematics》2010年第4期1025-1038,共14页中国科学:数学(英文版)

基  金:supported by National Natural Science Foundation of China (Grant Nos.10771026,10901094);the Scientific Research Foundation for the Returned Overseas Chinese Scholars,State Education Ministry of China

摘  要:Based on the differential properties of the smoothing metric projector onto the second-order cone,we prove that,for a locally optimal solution to a nonlinear second-order cone programming problem,the nonsingularity of the Clarke's generalized Jacobian of the smoothing Karush-Kuhn-Tucker system,constructed by the smoothing metric projector,is equivalent to the strong second-order sufficient condition and constraint nondegeneracy,which is in turn equivalent to the strong regularity of the Karush-Kuhn-Tucker point.Moreover,this nonsingularity property guarantees the quadratic convergence of the corresponding smoothing Newton method for solving a Karush-Kuhn-Tucker point.Interestingly,the analysis does not need the strict complementarity condition.Based on the differential properties of the smoothing metric projector onto the second-order cone,we prove that,for a locally optimal solution to a nonlinear second-order cone programming problem,the nonsingularity of the Clarke’s generalized Jacobian of the smoothing Karush-Kuhn-Tucker system,constructed by the smoothing metric projector,is equivalent to the strong second-order sufficient condition and constraint nondegeneracy,which is in turn equivalent to the strong regularity of the Karush-Kuhn-Tucker point.Moreover,this nonsingularity property guarantees the quadratic convergence of the corresponding smoothing Newton method for solving a Karush-Kuhn-Tucker point.Interestingly,the analysis does not need the strict complementarity condition.

关 键 词:second-order cone programming problem SMOOTHING METRIC PROJECTOR B-subdifferential Clarke’s generalized JACOBIAN SMOOTHING Newton method 

分 类 号:O221.2[理学—运筹学与控制论]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象