检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]中国科学技术大学电子科学与技术系
出 处:《电子技术(上海)》2010年第7期1-4,共4页Electronic Technology
基 金:国家自然科学基金项目(60703069);国家高技术研究发展(863)计划项目(2009AA01Z322)
摘 要:针对基于单目视觉信息的裸手手势,采用了基于改进型形状上下文描述子的分类识别方法。该方法首先通过肤色信息以及背景建模提取手部区域,然后利用单手指模板对手指进行检测,同时采用改进型形状上下文描述子对手部区域整体轮廓进行描述。在此基础上,使用有向无环图支持向量机(Directed Acyclic Graph Support Vector Machine,DAGSVM)对所提取的特征进行模式分类。其中,针对基本算法存在的问题,改进型形状上下文描述子将基于各个轮廓点的形状上下文直方图改为基于重心的形状上下文直方图,以提高计算速度,增强实时性。对30种字母手势,3种控制手势和10个数字手势开展的离线和在线实验结果表明,该方法取得了较好的分类准确率(离线:96%,在线:91%)和较高的实时性(识别时间14~15ms),适用于基于字母手势的实时人机交互。针对基于单目视觉信息的裸手手势,采用了基于改进型形状上下文描述子的分类识别方法。该方法首先通过肤色信息以及背景建模提取手部区域,然后利用单手指模板对手指进行检测,同时采用改进型形状上下文描述子对手部区域整体轮廓进行描述。在此基础上,使用有向无环图支持向量机(Directed Acyclic Graph Support Vector Machine,DAGSVM)对所提取的特征进行模式分类。其中,针对基本算法存在的问题,改进型形状上下文描述子将基于各个轮廓点的形状上下文直方图改为基于重心的形状上下文直方图,以提高计算速度,增强实时性。对30种字母手势,3种控制手势和10个数字手势开展的离线和在线实验结果表明,该方法取得了较好的分类准确率(离线:96%,在线:91%)和较高的实时性(识别时间14~15ms),适用于基于字母手势的实时人机交互。
分 类 号:TN01[电子电信—物理电子学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.33