语音分段在基于GMM-SVM说话人确认中的应用  被引量:1

Application of Utterance Partition Based on Time Interval in GMM-SVM Speaker Verification

在线阅读下载全文

作  者:饶为[1] 王典洪[1] 麦文伟[2] 

机构地区:[1]中国地质大学(武汉)机械与电子信息学院 [2]香港理工大学电子及资讯工程学系

出  处:《电子技术(上海)》2010年第3期18-19,共2页Electronic Technology

摘  要:在说话人确认系统的实际应用中,让用户提供大量的训练语音是不现实的,所以在GMM-SVM系统中,正样本点数通常只有一个,而负样本点数远远多于正样本点数,造成SVM分类超平面严重偏向负样本,这种情况对于支持向量机的性能影响很大。针对此问题,提出了基于时间间隔对语音数据进行分段的方法,来增多正样本点数,得到更好的分类超平面。美国国家标准与技术研究所(NIST)2002年说话人识别数据库上的实验证明,语音分段的方法能在一定程度上提升整个说话者确认系统的识别精度和鲁棒性。在说话人确认系统的实际应用中,让用户提供大量的训练语音是不现实的,所以在GMM-SVM系统中,正样本点数通常只有一个,而负样本点数远远多于正样本点数,造成SVM分类超平面严重偏向负样本,这种情况对于支持向量机的性能影响很大。针对此问题,提出了基于时间间隔对语音数据进行分段的方法,来增多正样本点数,得到更好的分类超平面。美国国家标准与技术研究所(NIST)2002年说话人识别数据库上的实验证明,语音分段的方法能在一定程度上提升整个说话者确认系统的识别精度和鲁棒性。

关 键 词:语音分段 GMM超向量 支持向量机 通用背景模型 说话人确认 

分 类 号:TN01[电子电信—物理电子学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象