Model averaging for semiparametric additive partial linear models  被引量:6

Model averaging for semiparametric additive partial linear models

在线阅读下载全文

作  者:Deng GuoHua Liang Hua 

机构地区:[1]Jiangxi Univ Finance & Econ, Sch Finance & Stat, Nanchang 330013, Peoples R China [2]Univ Rochester, Dept Biostat & Computat Biol, Rochester, NY 14642 USA

出  处:《Science China Mathematics》2010年第5期326-339,共14页中国科学:数学(英文版)

基  金:supported by US National Science Foundation (Grant No.DMS-0806097)

摘  要:To improve the prediction accuracy of semiparametric additive partial linear models(APLM) and the coverage probability of confidence intervals of the parameters of interest,we explore a focused information criterion for model selection among ALPM after we estimate the nonparametric functions by the polynomial spline smoothing,and introduce a general model average estimator.The major advantage of the proposed procedures is that iterative backfitting implementation is avoided,which thus results in gains in computational simplicity.The resulting estimators are shown to be asymptotically normal.A simulation study and a real data analysis are presented for illustrations.To improve the prediction accuracy of semiparametric additive partial linear models(APLM) and the coverage probability of confidence intervals of the parameters of interest,we explore a focused information criterion for model selection among ALPM after we estimate the nonparametric functions by the polynomial spline smoothing,and introduce a general model average estimator.The major advantage of the proposed procedures is that iterative backfitting implementation is avoided,which thus results in gains in computational simplicity.The resulting estimators are shown to be asymptotically normal.A simulation study and a real data analysis are presented for illustrations.

关 键 词:BACKFITTING FOCUSED information criterion POLYNOMIAL SPLINE MODEL selection MODEL uncertainty 

分 类 号:N[自然科学总论]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象