检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]中国科学院电子学研究所,北京100190 [2]中国科学院研究生院,北京100190
出 处:《遥测遥控》2009年第2期28-33,52,共7页Journal of Telemetry,Tracking and Command
摘 要:研究利用平均粗糙度特征对由MSTAR数据集构成的SAR图像进行目标检测的方法,分别使用平均粗糙度特征与CFAR方法对不同复杂度背景条件下的SAR图像进行目标检测。仿真结果表明,平均粗糙度特征能够在不同背景条件下以更低虚警率检测出特定大小的目标,目标空间可分辨性好、位置指示准确;但在复杂背景条件下的检测虚警率比单一背景下的检测虚警率有所上升。This paper studies the method of the average roughness feature for the SAR image target detection by MSTAR database.The results of target detections using the average roughness feature are compared with those using the method of CFAR for SAR images in different backgrounds.Simulation results indicate that the method using the average roughness feature can not only detect size-fixed targets but also have lower false alarm rates,its spatial resolutions of the detected targets are higher and the locations of the detected targets are more accurate in different backgrounds,but the false alarm rates in complex background are worse than those in the simple background using the average roughness feature.
关 键 词:合成孔径雷达 目标检测 指数小波变换 平均粗糙度特征 CFAR
分 类 号:TN957.52[电子电信—信号与信息处理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3