检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]东北大学信息科学与工程学院,辽宁沈阳110004
出 处:《中南大学学报(自然科学版)》2009年第S1期142-148,共7页Journal of Central South University:Science and Technology
基 金:国家自然科学基金资助项目(60671050)
摘 要:提出了基于灰度相关性帧间差分和背景差分相融合的一种实时目标检测方法。首先,采用基于最小均方误差的灰度相关性帧间差分,考虑图像噪声的高斯模型,确定差分用的阈值集合,得到差分二值图像;然后,使用混合高斯模型(GMM)进行背景建模,将模型的2.5倍方差和均值的最大值作为匹配准则,并基于光照变化对其背景图像进行自适应更新;最后,在原彩色图像的HSV空间中检测阴影,对帧间差和背景差后的二值图像去除阴影,接着进行相与操作,最终准确检测出运动目标。实验和分析结果表明,本算法能够消除噪音、阴影,能有效适应不同光照条件下的检测场景,因此,具有较高的准确性、鲁棒性和自适应性。A novel real-time target detection algorithm based on combining gray correlation frame difference and background difference was presented. Firstly, the minimum mean square error of the gray correlation frame difference was used to get the difference binary image, and the difference image threshold was set considering the Gaussian model of the image noise. Secondly, background is modeled by Gaussian mixture model (GMM) using 2.5 times of the model variance and the maximum mean as matching criteria, and background was updated adaptively based on the illumination change. Thirdly shadows in the HSV space of the original color images were detected and shadows in the binary images of image difference and background difference were removed respectively, and logical AND operation was done. Finally, the moving target was detected accurately. The analyses and experiments results show that the proposed algorithm can eliminate noise, shadow, and can adapt to different illumination condition detection scenes. Therefore, it has higher accuracy, robustness and adaptability.
关 键 词:混合高斯模型 阴影检测 自适应背景更新 帧间差分 背景差分
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117