Aerodynamically Assisted Tip-Pen Direct Writing  

Aerodynamically Assisted Tip-Pen Direct Writing

在线阅读下载全文

作  者:刘丰 张人佶 

机构地区:[1]Advanced Manufacture Technology Center, China Academy of Machinery Science & Technology [2]State Key Laboratory of Advanced Forming Technology and Equipment [3]Department of Mechanical Engineering, Tsinghua University

出  处:《Tsinghua Science and Technology》2009年第S1期116-119,共4页清华大学学报(自然科学版(英文版)

基  金:Supported by the National Natural Science Foundation of China(No. 50105008);the Specialized Research Fund for the Doctoral Program of Higher Education of MOE, P.R.C. (No. 20050003046)

摘  要:Scaffolds require individual external shape and well-defined internal structure, which is of great importance for tissue engineering. Rapid prototyping (RP) uses layer-manufacturing strategies to create physical objects and has the advantage on scaffold fabrication. A new RP technology called aerodynamically assisted tip-pen direct writing was developed to construct the complex architectures. Compared with the traditional nozzle, the new nozzle has a micro-tip in the center of the micro-hole. The flow is determined by the gap between the micro-hole and micro-tip, which makes it practical for more accurate flow control. A highly accurate three-dimensional (3-D) micro-positioning system was employed with the new nozzle to deposit maltose structures. 3-D architectures had been made by this method, the width of fiber in which is about 120 μm. The results show that this method provides a possibility to construct 3-D scaffolds with tissue-scale features (i.e., 10-100 μm) without bad influence on the biological activities.Scaffolds require individual external shape and well-defined internal structure, which is of great importance for tissue engineering. Rapid prototyping (RP) uses layer-manufacturing strategies to create physical objects and has the advantage on scaffold fabrication. A new RP technology called aerodynamically assisted tip-pen direct writing was developed to construct the complex architectures. Compared with the traditional nozzle, the new nozzle has a micro-tip in the center of the micro-hole. The flow is determined by the gap between the micro-hole and micro-tip, which makes it practical for more accurate flow control. A highly accurate three-dimensional (3-D) micro-positioning system was employed with the new nozzle to deposit maltose structures. 3-D architectures had been made by this method, the width of fiber in which is about 120 μm. The results show that this method provides a possibility to construct 3-D scaffolds with tissue-scale features (i.e., 10-100 μm) without bad influence on the biological activities.

关 键 词:tip-pen direct writing micro fabrication rapid prototyping SCAFFOLD 

分 类 号:TP391.77[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象