Further results on ultraconvergence derivative recovery for odd-order rectangular finite elements  被引量:1

Further results on ultraconvergence derivative recovery for odd-order rectangular finite elements

在线阅读下载全文

作  者:WEI JiDong ZHU QiDing 

机构地区:[1]College of Mathematics and Computer Science,Hunan Normal University,Changsha 410081,China [2]Department of Mathematics,Hengyang Normal University,Hengyang 421000,China

出  处:《Science China Mathematics》2009年第8期1671-1684,共14页中国科学:数学(英文版)

摘  要:For rectangular finite element, we give a superconvergence method by SPR technique based on the generalization of a new ultraconvergence record and the sharp Green function estimates, by which we prove that the derivative has ultra-convergence of order O(hk+3) (k 3 being odd) and displacement has order of O(hk+4) (k 4 being even) at the locally symmetry points.For rectangular finite element, we give a superconvergence method by SPR technique based on the generalization of a new ultraconvergence record and the sharp Green function estimates, by which we prove that the derivative has ultra-convergence of order O(h k+3) (k ? 3 being odd) and displacement has order of O(h k+4) (k ? 4 being even) at the locally symmetry points.

关 键 词:finite element ultra-convergence locally symmetric meshes SPR operator 65N30 

分 类 号:O241[理学—计算数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象