检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:KOU S.C.
机构地区:[1]Department of Statistics,Harvard University,Cambridge,MA 02138,USA
出 处:《Science China Mathematics》2009年第6期1181-1211,共31页中国科学:数学(英文版)
基 金:supported by the United States National Science Fundation Career Award (Grant No. DMS-0449204)
摘 要:Advances in nanotechnology enable scientists for the first time to study biological pro-cesses on a nanoscale molecule-by-molecule basis.They also raise challenges and opportunities for statisticians and applied probabilists.To exemplify the stochastic inference and modeling problems in the field,this paper discusses a few selected cases,ranging from likelihood inference,Bayesian data augmentation,and semi-and non-parametric inference of nanometric biochemical systems to the uti-lization of stochastic integro-differential equations and stochastic networks to model single-molecule biophysical processes.We discuss the statistical and probabilistic issues as well as the biophysical motivation and physical meaning behind the problems,emphasizing the analysis and modeling of real experimental data.Advances in nanotechnology enable scientists for the first time to study biological pro-cesses on a nanoscale molecule-by-molecule basis.They also raise challenges and opportunities for statisticians and applied probabilists.To exemplify the stochastic inference and modeling problems in the field,this paper discusses a few selected cases,ranging from likelihood inference,Bayesian data augmentation,and semi-and non-parametric inference of nanometric biochemical systems to the uti-lization of stochastic integro-differential equations and stochastic networks to model single-molecule biophysical processes.We discuss the statistical and probabilistic issues as well as the biophysical motivation and physical meaning behind the problems,emphasizing the analysis and modeling of real experimental data.
关 键 词:likelihood analysis Bayesian data augmentation semi-and NON-PARAMETRIC INFERENCE SINGLE-MOLECULE experiment SUBDIFFUSION generalized LANGEVIN equation fractional BROWNIAN motion stochastic network enzymatic reaction
分 类 号:O213[理学—概率论与数理统计]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229