On fundamental groups related to the Hirzebruch surface F_1  

On fundamental groups related to the Hirzebruch surface F_1

在线阅读下载全文

作  者:Michael FRIEDMAN Mina TEICHER 

机构地区:[1]Department of Mathematics,Bar-Ilan University

出  处:《Science China Mathematics》2008年第4期728-745,共18页中国科学:数学(英文版)

基  金:This work was supported by the Emmy Noether Institute Fellowship(by the Minerva Foundation of Germany);Israel Science Foundation(Grant No.8008/02-3)

摘  要:Given a projective surface and a generic projection to the plane,the braid monodromy factorization(and thus,the braid monodromy type)of the complement of its branch curve is one of the most important topological invariants,stable on deformations.From this factorization,one can compute the fundamental group of the complement of the branch curve,either in C^2 or in CP^2.In this article,we show that these groups,for the Hirzebruch surface F_1,(a,b),are almost-solvable.That is, they are an extension of a solvable group,which strengthen the conjecture on degeneratable surfaces.Given a projective surface and a generic projection to the plane,the braid monodromy factorization(and thus,the braid monodromy type)of the complement of its branch curve is one of the most important topological invariants,stable on deformations.From this factorization,one can compute the fundamental group of the complement of the branch curve,either in C<sup>2</sup> or in CP<sup>2</sup>.In this article,we show that these groups,for the Hirzebruch surface F<sub>1</sub>,(a,b),are almost-solvable.That is, they are an extension of a solvable group,which strengthen the conjecture on degeneratable surfaces.

关 键 词:Hirzebruch SURFACES DEGENERATION generic PROJECTION branch curve BRAID MONODROMY FUNDAMENTAL group classification of SURFACES 

分 类 号:O152[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象