Optimal query error of quantum approximation on some Sobolev classes  被引量:2

Optimal query error of quantum approximation on some Sobolev classes

在线阅读下载全文

作  者:SONG ZhanJie YE PeiXin 

机构地区:[1]School of Sciences,Tianjin University,Tianjin 300072,China [2]School of Mathematical Sciences and LPMC,Nankai University,Tianjin 300071,China [3]School of Electronic Information Engineering,Tianjin University,Tianjin 300072,China

出  处:《Science China Mathematics》2008年第9期1664-1678,共15页中国科学:数学(英文版)

基  金:supported by the National Natural Science Foundation of China (Grant Nos. 10501026, 60675010,10626029 and 60572113);the China Postdoctoral Science Foundation (Grant No. 20070420708)

摘  要:We study the approximation of the imbedding of functions from anisotropic and generalized Sobolev classes into L q ([0, 1]d) space in the quantum model of computation. Based on the quantum algorithms for approximation of finite imbedding from L p N to L q N , we develop quantum algorithms for approximating the imbedding from anisotropic Sobolev classes B(W p r ([0, 1] d )) to L q ([0, 1] d ) space for all 1 ? q,p ? ∞ and prove their optimality. Our results show that for p < q the quantum model of computation can bring a speedup roughly up to a squaring of the rate in the classical deterministic and randomized settings.We study the approximation of the imbedding of functions from anisotropic and general-ized Sobolev classes into Lq([0,1]d) space in the quantum model of computation. Based on the quantum algorithms for approximation of finite imbedding from LpN to LNq , we develop quantum algorithms for approximating the imbedding from anisotropic Sobolev classes B(Wpr ([0,1]d)) to Lq([0,1]d) space for all 1 q,p ∞ and prove their optimality. Our results show that for p < q the quantum model of computation can bring a speedup roughly up to a squaring of the rate in the classical deterministic and randomized settings.

关 键 词:quantum approximation Sobolev classes n-th minimal query error 41A63 65D15 

分 类 号:O241[理学—计算数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象