检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《Journal of Computational Mathematics》2000年第3期265-276,共12页计算数学(英文)
基 金:the China State Key Project for Basic Researches;the National Natural Science Foundation of China;The Research Fund for th
摘 要:The Ritz vectors obtained by Arnoldi's method may not be good approxima- tions and even may not converge even if the corresponding Ritz values do. In order to improve the quality of Ritz vectors and enhance the efficiency of Arnoldi type algorithms, we propose a strategy that uses Ritz values obtained from an m-dimensional Krylov subspace but chooses modified approximate eigenvectors in an (m + 1)-dimensional Krylov subspace. Residual norm of each new approximate eigenpair is minimal over the span of the Ritz vector and the (m+1)th basis vector, which is available when the m-step Arnoldi process is run. The resulting modi- fied m-step Arnoldi method is better than the standard m-step one in theory and cheaper than the standard (m + 1)-step one. Based on this strategy, we present a modified m-step restarted Arnoldi algorithm. Numerical examples show that the modified m-step restarted algorithm and its version with Chebyshev acceleration are often considerably more efficient than the standard (m+ 1)-step restarted ones.The Ritz vectors obtained by Arnoldi's method may not be good approxima- tions and even may not converge even if the corresponding Ritz values do. In order to improve the quality of Ritz vectors and enhance the efficiency of Arnoldi type algorithms, we propose a strategy that uses Ritz values obtained from an m-dimensional Krylov subspace but chooses modified approximate eigenvectors in an (m + 1)-dimensional Krylov subspace. Residual norm of each new approximate eigenpair is minimal over the span of the Ritz vector and the (m+1)th basis vector, which is available when the m-step Arnoldi process is run. The resulting modi- fied m-step Arnoldi method is better than the standard m-step one in theory and cheaper than the standard (m + 1)-step one. Based on this strategy, we present a modified m-step restarted Arnoldi algorithm. Numerical examples show that the modified m-step restarted algorithm and its version with Chebyshev acceleration are often considerably more efficient than the standard (m+ 1)-step restarted ones.
关 键 词:Large unsymmetric The m-step Arnoldi process The m-step Arnoldi method EIGENVALUE Ritz value EIGENVECTOR Ritz vector Modified
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.173