Congruences for the class numbers of real cyclic sextic number fields  被引量:2

Congruences for the class numbers of real cyclic sextic number fields

在线阅读下载全文

作  者:刘通 

出  处:《Science China Mathematics》1999年第10期1009-1018,共10页中国科学:数学(英文版)

基  金:Project supported by the National Natural Science Foundation of China (Grant No. 19771052).

摘  要:LetK 6 be a real cyclic sextic number field, andK 2,K 3 its quadratic and cubic subfield. Leth(L) denote the ideal class number of fieldL. Seven congruences forh - =h (K 6)/(h(K 2)h(K 3)) are obtained. In particular, when the conductorf 6 ofK 6 is a primep, $Ch^ - \equiv B\tfrac{{p - 1}}{6}B\tfrac{{5(p - 1)}}{6}(\bmod p)$ , whereC is an explicitly given constant, andB n is the Bernoulli number. These results on real cyclic sextic fields are an extension of the results on quadratic and cyclic quartic fields.Let K<sub>6</sub> be a real cyclic sextic number field, and K<sub>2</sub>, K<sub>3</sub> its quadratic and cubic subfield. Let h(L) denote the ideal class number of field L. Seven congruences for h<sup>-</sup> = h(K<sub>6</sub>)/(h(K<sub>2</sub>)h(K<sub>3</sub>)) are obtained. In particular, when the conductor f<sub>6</sub> of K<sub>6</sub> is a prime p, (mod p), where C is an explicitly given constant, and B<sub>n</sub> is the Bernoulli number. These results on real cyclic sextic fields are an extension of the results on quadratic and cyclic quartic fields.

关 键 词:REAL CYCLIC sextic NUMBER field class NUMBER P-ADIC L-function. 

分 类 号:O156[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象