CONVERGENCE OF SPECTRAL METHOD IN TIME FOR BURGERS' EQUATION  被引量:1

CONVERGENCE OF SPECTRAL METHOD IN TIME FOR BURGERS' EQUATION

作  者:吴声昌 刘小清 

出  处:《Acta Mathematicae Applicatae Sinica》1997年第3期314-320,共6页应用数学学报(英文版)

摘  要:For solving Burgers' equation with periodic boundary conditions, this paper preseats a fully spectral discretisation method: Fourier Galerkin approximation in the spatial direction and Chebyshev pseudospectral approximation in the time direction. The expansion coefficients are determined by means of minimizing an object functional, and rapid convergence of the method is proved.For solving Burgers' equation with periodic boundary conditions, this paper preseats a fully spectral discretisation method: Fourier Galerkin approximation in the spatial direction and Chebyshev pseudospectral approximation in the time direction. The expansion coefficients are determined by means of minimizing an object functional, and rapid convergence of the method is proved.

关 键 词:Spectral method Burgers' equation Galerkin approximation pseudospectral approximation 

分 类 号:O241[理学—计算数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象