SOME RESULTS RELATED TO THE SEPARABLE QUOTIENT PROBLEM  

SOME RESULTS RELATED TO THE SEPARABLE QUOTIENT PROBLEM

在线阅读下载全文

作  者:钟怀杰 

出  处:《Acta Mathematica Scientia》1996年第3期248-256,共9页数学物理学报(B辑英文版)

摘  要:The problem whether every infinite dimensional Banach space has an infinite dimensional separable quotient space has remained unsolved for a long time. In this paper we prove: the Banach space X has an infinite dimensional separable quotient if and only if X has an infinite dimensional separable quasicomplemented subspace, also if and only if there exists a Banach space Y and a bounded linear operator T is an element of B(Y,X such that the range of T is nonclosed and dense in X. Besides, the other relevant questions for such spaces e.g. the question on operator ideals that on H.I.(hereditarily indecomposable) spaces, that on invariant subspaces of operators, etc, are also discussed.The problem whether every infinite dimensional Banach space has an infinite dimensional separable quotient space has remained unsolved for a long time. In this paper we prove: the Banach space X has an infinite dimensional separable quotient if and only if X has an infinite dimensional separable quasicomplemented subspace, also if and only if there exists a Banach space Y and a bounded linear operator T is an element of B(Y,X such that the range of T is nonclosed and dense in X. Besides, the other relevant questions for such spaces e.g. the question on operator ideals that on H.I.(hereditarily indecomposable) spaces, that on invariant subspaces of operators, etc, are also discussed.

关 键 词:Banach space separable space quotient space bounded linear operator 

分 类 号:O241[理学—计算数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象