检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:楼红卫[1]
机构地区:[1]宁波大学应用数学系
出 处:《宁波大学学报(理工版)》1996年第2期1-8,共8页Journal of Ningbo University:Natural Science and Engineering Edition
摘 要:考虑了测度空间中近可加函数的稳定性,即用可加函数对近可加函数的逼近问题,文中给出了可用可加函数逼近的函数的L∞、LP刻划.Suppose f(x) is a function satisfying f(x + y) - f(x) - f(y) = 0,then f(x)is called an additive function. The, stability of the functional equation f(x + y) - f(x)- f(y)=0 was considered. The main results were:Lemma Suppose R is the Lebesgue measure space, R ̄2 = R × R is the multiplicative measure space, f(x) is a measurable function,such that f(x +y) -f(x) -f(y) = 0 a.e. (x,y) ∈ R ̄2then there exists a unique g(x) such that g(x + y) = g(x) + g(y)andf(x) = g(x) a.e. x ∈ RTheorem 1 Suppose f:R → R is a Lebesgue measurable funcion,such that ‖f(x +y) -f(x) -f(y)‖∞≤δ, i.e.|f(x+y) -f(x) -f(y)| ≤δthen there exists a unique g(x) such that g(x + y) = g(x) + g(y)and|f(x) -g(x)|≤δTheorem 2 Suppose p ∈ (0,+ ∞), f:R → R is a Lebesgue measurable function,such that holds for any y ∈ R,where dx is the Lebesgue measure, then f(x) must be an additive fraction.Theorem 3 Suppose p ∈ (0,+ ∞), f:R → R is a Lebesgue measurable function,such that where dxdy is the multiplicative measure of Lebesgue measure dx and dy. then there exists a unique additive function g(x) such that f(x) = g(x) for almost every x ∈ R.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.17.153.20