检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]云南师范大学颜色与图像视觉实验室,昆明650092
出 处:《吉林大学学报(工学版)》2013年第S1期209-212,共4页Journal of Jilin University:Engineering and Technology Edition
基 金:国家自然科学基金项目(60668001);云南教育厅重点项目(ZD2009006)
摘 要:如何使用图像底层特征有效表达高层语义是实现图像自动分类难以逾越的鸿沟。本文将模糊粗糙集理论引入图像自动分类,在使用图像底层特征表达高层语义的图像自动分类过程中,把高维特征向量处理、合适的描述符集合选择难题转换为模糊决策表,使用图像语义贴近度概念来检验图像特征属性间的数据依赖关系,以达到属性约简,剔除冗余信息和图像分类规则推导的目的,并定义了图像类别隶属度函数对图像进行分类。实验结果表明该图像分类系统的分类正确率达81.7%,说明该方法具有很好的精确性和有效性,能较好地实现图像自动分类。There is a gap between low-level feature of image and high-level semantic understanding of users in the automatic image classification.The fuzzy-rough set theory was introduced into automatic image classification.During the mapping from low-level visual feature to high-level semantic feature,the problems of high-dimensional feature vector processing and the appropriate choice of descriptors in image classification processing were converted to fuzzy decision table,and the concept of the semantic proximity was used to verify the dependent relations of image attributes for attribute reduction,which could eliminate the redundant information and deduce the rule of image classification.In the end,the category of an image was determined by a membership degree function.An image classification system was developed and the accuracy of the classification results was 81.7%,experimental results show that the method has good accuracy and effectiveness,and can achieve a better image automatic classification.
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.148.108.24