检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《计算力学学报》2013年第S1期74-78,共5页Chinese Journal of Computational Mechanics
摘 要:将多刚体系统的广义逆矩阵方法推广到含弹性杆与刚性体的混合系统的动力学分析中,建立了以节点坐标表示的基于全局惯性坐标系的刚体-柔性体混合系统动力学方程。首先以两端节点坐标为变量推导了弹性杆的动力学方程,以刚性体节点坐标为变量推导了刚性体节点速度约束方程和刚性体动力学方程,最后得到弹性杆与刚性体混合系统的动力学方程和速度约束方程.本方法在同一个惯性坐标系对刚柔多体系统进行描述,具有方法简洁、便于计算建模的特点.论文最后给出两个数值算例,检验了方法的有效性.The generalized inverse matrix method for rigid multi-body system is modified to analyze the rigid-flexible multi-body system consisting of elastic bars and rigid bodies in this paper.The equation of dynamics of rigid-flexible multi-body system is formulated by means of the Cartesian coordinates of nodes under the global inertial coordinates system.At first,the equation of dynamics of'elastic bar is written through using its nodal coordinates.The constrain equation of nodal velocities and the equation of dynamics of rigid body are created based on its nodal coordinates.The equation of dynamics and the constrain equation of velocity of the rigid-flexible multi-body system are obtained.By using the global inertial coordinate system in describing the rigid-flexible multi-body system,this method is simple for formulating and easy for modeling.In the end,two numerical examples are given and the validity of the method is examined.
关 键 词:多体系统 刚柔系统 动力学 广义逆矩阵 节点坐标
分 类 号:O313.3[理学—一般力学与力学基础]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.236