Impedance Analysis of Forging Process and Strategy Study on Compliance for Forging Manipulator  被引量:2

Impedance Analysis of Forging Process and Strategy Study on Compliance for Forging Manipulator

在线阅读下载全文

作  者:ZHANG Pu YAO Zhenqiang DU Zhengchun 

机构地区:[1]State Key Lab of Mechanical System and Vibration,Shanghai Jiao Tong University

出  处:《Chinese Journal of Mechanical Engineering》2013年第4期651-658,共8页中国机械工程学报(英文版)

基  金:supported by National Basic Research Program of China(973 Program, Grant No. 2006CB705400)

摘  要:In the field of heavy forging, there are numerous researches on deformation rule in forging process by FEM simulation, however, not many scholars take the equipment constraint and the mutual reaction load between the forging manipulator clamp and the forging blank into account, which will impact on safety of manipulator body and quality of forging blank. This paper presents an impedance model to describe the load and formulates compliance strategies correspondingly to reduce the mutual reaction load for forging manipulator. Firstly, an FEM model of forging process is built. Meanwhile, the clamp of forging manipulator is added to the model as movement constraint and interaction part between the manipulator and the forming process. Secondly, a typical forging process is simulated by changing the movement constraint, and then an impedance model is established to describe the relationship between the load and movement constraint. Finally, two kinds of compliance strategies are formulated according to the impedance model, one is called free compliance, and the other is initiative/passive compliance. The simulation results show that compliance strategies reduce the load amounting to 5 000 kN in z direction between the manipulator clamp and the forging blank obviously, which may lead to serious accidents, such as the capsizing of forging manipulator, the fracture of manipulator clamp, and so on. The proposed research simulates the more real forging process, gets the initiative/passive compliance strategy which is more simple and suitable to the real producing and better for forming a forging process planning and control system in the modern production, and improves the quality and efficiency of heavy forging.In the field of heavy forging, there are numerous researches on deformation rule in forging process by FEM simulation, however, not many scholars take the equipment constraint and the mutual reaction load between the forging manipulator clamp and the forging blank into account, which will impact on safety of manipulator body and quality of forging blank. This paper presents an impedance model to describe the load and formulates compliance strategies correspondingly to reduce the mutual reaction load for forging manipulator. Firstly, an FEM model of forging process is built. Meanwhile, the clamp of forging manipulator is added to the model as movement constraint and interaction part between the manipulator and the forming process. Secondly, a typical forging process is simulated by changing the movement constraint, and then an impedance model is established to describe the relationship between the load and movement constraint. Finally, two kinds of compliance strategies are formulated according to the impedance model, one is called free compliance, and the other is initiative/passive compliance. The simulation results show that compliance strategies reduce the load amounting to 5 000 kN in z direction between the manipulator clamp and the forging blank obviously, which may lead to serious accidents, such as the capsizing of forging manipulator, the fracture of manipulator clamp, and so on. The proposed research simulates the more real forging process, gets the initiative/passive compliance strategy which is more simple and suitable to the real producing and better for forming a forging process planning and control system in the modern production, and improves the quality and efficiency of heavy forging.

关 键 词:FORGING IMPEDANCE COMPLIANCE MANIPULATOR 

分 类 号:TG316[金属学及工艺—金属压力加工]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象