基于支持向量机的水电机组轴系运行故障诊断及预测研究  被引量:11

Research of fault diagnosis and prediction based on Support Vector Machine for shaft system of hydropower unit

在线阅读下载全文

作  者:周叶[1] 唐澍[1] 潘罗平[1] 夏伟[1] 

机构地区:[1]中国水利水电科学研究院水力机电研究所,北京100038

出  处:《水利学报》2013年第S1期111-115,共5页Journal of Hydraulic Engineering

摘  要:为实现水电机组轴系运行常见故障的快速实时诊断,提出了一种基于支持向量机的故障诊断及预测方法。该方法应用支持向量机分类的基本原理,提取机组振动信号的频谱能量作为学习样本,通过训练建立基于水电机组轴系运行常见故障的分类模型,进行故障类型识别。同时,结合状态监测系统的实时采集数据,应用时间加权因子和支持向量机回归模型,实现特征数据的实时预测。经实验分析验证,该诊断方法具有较高的准确性,其回归预测方法有效可行,能满足实时故障诊断的要求。In order to realize the real-time fault diagnosis for shaft system of hydropower unit,a fault diag-nosis and prediction method based on Support Vector Machine(SVM)has been put forward. Applying thebasic principle of classification,frequency energy from vibration signal data of shaft was collected,featurevectors build with energy were extracted as learning samples,and then used in training and establishingclassification models for fault type identification. In addition,real-time acquisition data from condition moni-toring system and time weighting factor were used for constructing regression models,which realized the re-al-time prediction of trend data. The experiment shows that the diagnosis and prediction method has a highaccuracy,which is suitable for online fault diagnosis of hydropower unit.

关 键 词:水电机组 轴系 故障诊断 支持向量机 小波包分解 

分 类 号:TV738[水利工程—水利水电工程] TP183[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象