检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:穆祥昆[1,2] 王劲松[1,2] 薛羽丰 黄玮[1,2]
机构地区:[1]天津理工大学智能计算及软件新技术天津市重点实验室,天津300384 [2]天津理工大学计算机视觉与系统省部共建教育部重点实验室,天津300384
出 处:《通信学报》2013年第S2期51-57,共7页Journal on Communications
基 金:国家自然科学基金资助项目(61272450);滨海新区科技小巨人成长计划基金资助项目(2011-XJR12005)~~
摘 要:提出了一种基于活跃熵的网络异常流量检测新方法,将受监控的目标网络视为一个整体系统,对进出系统的网络数据流所形成的NetFlow记录进行分析,分别统计二者的活跃度并计算它们的活跃熵。在进行活跃熵的计算时,根据流量大小选择不同的尺度来降低误报率,从而能更有效地检测网络流量中存在的异常。在实际网络环境下的模拟实验结果表明,与传统检测方案相比,基于活跃熵的网络异常流量检测方法能够更有效地检测出具有随机特征的网络异常流量。A novel alive entropy-based detection approach was proposed, which detects the abnormal network traffic based on the values of alive entropies. The alive entropies calculated based on the NetFlow data coming from the network traffic of input and output of a whole system, which is essentially a monitored network. In order to decrease false positive rate of abnormal network traffic, different scales are selected to compute the values of alive entropies in different sizes of network traffic. With the low false positive rate of abnormal network traffic, the abnormal network traffic can be effectively detected. Experiments carried out on a real campus network were used to evaluate the effectiveness of the proposed approach. A comparative study illustrates that the proposed approach may easily detect the abnormal network traffic with random characteristics in comparison with some 'conventional' approaches reported in the literatures.
关 键 词:活跃熵 网络流量 异常流量检测 NetFlow分析
分 类 号:TP393.06[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.16.154.37