检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]北京航空航天大学仪器科学与光电工程学院,北京100191 [2]惯性技术国防重点实验室,北京100191
出 处:《中国惯性技术学报》2014年第2期254-259,共6页Journal of Chinese Inertial Technology
基 金:国家安全重大基础研究资助项目(613186);中央高校基本科研业务费专项资金资助项目(YWF-10-01-B30)
摘 要:为了消除光纤陀螺的温度效应并提高陀螺的精度,BP神经网络模型广泛的应用在光纤陀螺的零偏温度漂移辨识和补偿中。然而,单神经网络模型的泛化能力差,影响模型的预测结果。结合神经网络集成学习的思想,利用Bagging集成技术产生差异大、预测能力强的个体网络,提升模型的预测能力。建立光纤陀螺零偏温度的BP-Bagging模型,将其应用在温度补偿中。通过对某型光纤陀螺的零偏漂移数据进行仿真,结果表明:BP-Bagging模型相比线性回归模型、单BP神经网络模型的补偿效果更显著,有效改善了陀螺的零偏稳定性能。In order to improve the precision of fiber optic gyroscope (FOG), BP neural networks are widely applied in identification and compensation of FOG bias drift caused by temperature variation. However, the single BP neural network model is poor in generalization ability, which can affect the stability of prediction results. According to the ideas of ensemble learning, a neural network ensemble is developed to effectively generate the individual learner with strong generalization ability and great diversity by using Bagging algorithm, which has higher stability and accuracy in prediction, compared with the single BP model. A BP-Bagging model is established to compensate the FOG temperature errors. The traditional modeling method of linear regression and single BP neural network are also investigated to provide a comparison with the novel proposed model. The simulation results show that the BP-Bagging approach has better performance compared with those traditional models in compensation of FOG temperature drift and improvement of FOG accuracy.
关 键 词:光纤陀螺 神经网络集成 BP-Bagging模型 温度补偿
分 类 号:V241.5[航空宇航科学与技术—飞行器设计]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.191