基于非下采样剪切波变换的医学图像融合算法  被引量:11

Medical image fusion algorithm based on non-subsampled shearlet transform

在线阅读下载全文

作  者:陈贞[1] 邢笑雪[2] 

机构地区:[1]莆田学院信息工程学院,福建莆田351100 [2]长春大学电子信息工程学院,长春130022

出  处:《沈阳工业大学学报》2015年第2期194-199,共6页Journal of Shenyang University of Technology

基  金:吉林省教育厅基金资助项目(20140529)

摘  要:为了解决单一模态医学图像的局限性,提出了一种基于非下采样剪切波变换(NSST)的多模态医学图像融合方法.该方法利用NSST将待融合的医学图像分解成低频系数和高频系数,并利用区域能量加权(WLE)的方法对分解后的低频系数进行融合,使用区域能量和平均梯度加权的方法对分解后医学图像的高低频系数进行融合,采用NSST逆变换重建融合后的图像.选择信息熵、平均梯度和空间频率3个参数作为融合图像的客观评价参数,结果表明,该方法取得的融合结果比离散小波、轮廓波和非下采样轮廓波变换等传统方法更好,计算效率更高.In order to solve the limitation of single mode of medical images,a multi-mode medicine image fusion method based on non-subsampled shearlet transform( NSST) was proposed. In this method,the medical images to be fused were decomposed into lowfrequency and high frequency coefficients with the NSST. With the weighted local energy( WLE) method,the lowfrequency coefficients after decomposition were fused. With the local energy and average gradient weighted method,the high and lowfrequency coefficients of medical images after decomposition were fused. In addition, the fused images were reconstructed by the inverse NSST. Three parameters including the information entropy,average gradient and spatial frequency were selected as the objective evaluation parameters of fused images. The experimental results showthat the fusion effect of the proposed method is better than that of such traditional methods as discrete wavelet transform,contourlet transform and non-subsampled contourlet transform( NSCT),and the proposed method has higher computational efficiency.

关 键 词:医学图像 多模态 图像融合 非下采样剪切波变换 区域能量加权 平均梯度 客观评价 

分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象