检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]电子科技大学资源与环境学院,四川成都611731 [2]贵州省环境保护厅电子政务中心,贵州贵阳550000
出 处:《遥感技术与应用》2015年第1期82-91,共10页Remote Sensing Technology and Application
基 金:国家自然科学基金项目(41171302)"耦合不确定性空间推理和案例推理的区域矿产资源潜力预测模型研究";中央高校基本科研业务费专项资金(ZYGX2012J155);贵州省重大科技专项(黔科合重大专项字[2012]6007)"‘数字环保’关键技术研究及应用示范"资助
摘 要:由于光谱分辨率和空间分辨率的制约以及物理条件的限制,高光谱数据具有很高的光谱分辨率而其空间分辨率却很低。因此,一般高光谱数据的空间分辨率往往低于仅有几个波段的多光谱数据的空间分辨率。高光谱数据和多光谱数据的融合可以得到同时具有高空间分辨率和高光谱分辨率的数据,进而应用于更高空间分辨率下地物的识别和分类。非负矩阵分解(Nonnegative Matrix Factorization)算法用于实现低空间分辨率高光谱数据和高空间分辨率多光谱数据的融合。首先利用顶点成分分析法VCA(Vertex Component Analysis)分解高光谱数据,得到初始的端元波谱矩阵和端元丰度矩阵;然后用非负矩阵分解算法交替地对高光谱数据和多光谱数据进行分解,得到高光谱分辨率的端元波谱矩阵和高空间分辨率的丰度矩阵;最后两个矩阵相乘得到高空间分辨率和高光谱分辨率的融合结果。在每一步非负矩阵分解过程中,数据之间的传感器观测模型用于分解矩阵的初始化。AVIRIS和HJ-1A数据实验结果分析表明:非负矩阵分解算法有效提高了高光谱数据的所有波长范围内波段数据的空间分辨率,而高精度的融合结果可用于地物的目标识别和分类。The hyperspectral data has very high spectral resolution,but low spatial resolution with the tradeoff between the spectral and spatial resolution,as well as the physical limits.Therefore,in many cases,the spatial resolution of the hyperspectral image system is lower than the multispectral image system that has the less spectral channels.The fusion of the hyperspectral and multispectral data can produce fused data with high spatial and spectral resolution which can contribute to the identification and classification of the material at a finer spatial resolution.NMF(Nonnegative Matrix Factorization)algorithm is used to perform the fusion of low spatial resolution hyperspectral data and high spatial resolution multispectral data.Firstly,VCA(Vertex Component Analysis)is used to perform the factorization of hyperspectral data to obtain endmember spectra matrix and abundance matrix;Secondly,NMF(Nonnegative Matrix Factorization)is used to unmix the hyperspectral and multispectral data alternatively to obtain high spectral resolution endmember spectra matrix W and high spatial resolution abundance matrix H.Finally,fusion data with high spectral resolution and high spatial resolution can be obtained by multiplying the two matrices,.Sensor observation models of the data are built in the initialization matrix of each NMF unmixing procedure.The experiments with AVIRIS data and HJ-1Adata have shown that NMF method can be used to improve the spatial resolution on all wavelength regions,and the higher qualities of the estimated data by NMF can be used for the classification of the materials and identification at a finer spatial resolution.
分 类 号:TP751[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.173