检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]电子科技大学航空航天学院,四川成都611731 [2]成都出入境检验检疫局,四川成都610041
出 处:《应用光学》2015年第1期58-63,共6页Journal of Applied Optics
基 金:国家质检总局科技计划项目(2013IK085)
摘 要:在诸多图像质量评价方法中,结构相似度(SSIM)算法简单高效,准确性较高,但SSIM模型不能很好地评价存在局部失真和交叉失真类型的图像。针对SSIM算法对图像不同区域平等对待的不足并考虑了时域人眼视觉特性,提出一种改进的基于区域对比度和结构相似度(RCSSIM)的图像质量评价方法。该算法将图像区域灰度信息对比度与SSIM算法融合,加权归一为参考图像与失真图像的对比度结构相似度值,以其评价图像质量。在LIVE图像数据库上的实验结果表明,与SSIM算法相比,RCSSIM评价结果的皮尔逊线性相关系数提高约0.015,均方根误差减小约0.55,更接近于人眼主观测试结果,具有更好的评价性能。Among numerous image quality assessment(IQA) methods ,the structural similarity (SSIM) algorithm is simple ,high efficient and accurate .However ,it often does not work well when there is regional distortion or cross distortion in the image .To deal with the problem that SSIM algorithm treats the different regions of the image identically ,we took human visual characteristics in spatial domain into consideration and put forward an improved IQA method based on regional contrast and structural similarity (RCSSIM ) .The new algorithm combines regional contrast with structural similarity ,weighs and normalizes the original SSIM index to a regional contrast structural similarity metric between the reference image and the distortion im‐age to assess the image quality .The experiment results on LIVE image database show that the Pearson linear correlation coefficient (PLCC ) of the new algorithm increases by about 0 .015 and the root‐mean‐square error decreases by about 0 .55 compared with the SSIM algorithm .It indicates that the evaluation result of RCSSIM algorithm is more consistent with human visual system(HVS) characteristics and is more effective than the SSIM algorithm .
关 键 词:图像质量评价 区域对比度 SSIM 人眼视觉特性
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145