基于支持向量机的燃气轮机故障诊断  被引量:18

Gas Turbine Fault Diagnosis Based on a Support Vector Machine

在线阅读下载全文

作  者:罗颖锋[1] 曾进[1] 

机构地区:[1]上海交通大学数学系,上海200240

出  处:《热能动力工程》2004年第4期354-357,共4页Journal of Engineering for Thermal Energy and Power

摘  要:分析燃气轮机的 8种典型常见故障 ,建立了基于支持向量机的故障诊断模型 ,用实例计算证明其有效性。同时和神经网络方法对比后发现 :在小样本情况下 ,支持向量机方法的计算结果比神经网络要好 ,推广能力更强 ,而且效率高于神经网络。本方法针对故障诊断样本少的特点 ,为建立智能化的燃气轮机状态监控和故障诊断提供了一种新的途径 。With respect to eight kinds of commonly seen typical faults a fault diagnosis model is set up based on a support vector machine. Specific sample calculations have demonstrated the effectiveness of such a model. A comparison with a neural network method has shown that under the condition of a small quantity of samples the support vector machine-based method is superior to the neural network method in terms of calculation results, generalization ability and efficiency. When a relatively small number of diagnosis samples is involved, the above method may provide a new approach for creating an intelligent system of highly practical value for the condition monitoring and fault diagnosis of gas turbines.

关 键 词:燃气轮机 支持向量机 故障诊断 

分 类 号:TK39[动力工程及工程热物理—热能工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象