检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《热能动力工程》2004年第4期354-357,共4页Journal of Engineering for Thermal Energy and Power
摘 要:分析燃气轮机的 8种典型常见故障 ,建立了基于支持向量机的故障诊断模型 ,用实例计算证明其有效性。同时和神经网络方法对比后发现 :在小样本情况下 ,支持向量机方法的计算结果比神经网络要好 ,推广能力更强 ,而且效率高于神经网络。本方法针对故障诊断样本少的特点 ,为建立智能化的燃气轮机状态监控和故障诊断提供了一种新的途径 。With respect to eight kinds of commonly seen typical faults a fault diagnosis model is set up based on a support vector machine. Specific sample calculations have demonstrated the effectiveness of such a model. A comparison with a neural network method has shown that under the condition of a small quantity of samples the support vector machine-based method is superior to the neural network method in terms of calculation results, generalization ability and efficiency. When a relatively small number of diagnosis samples is involved, the above method may provide a new approach for creating an intelligent system of highly practical value for the condition monitoring and fault diagnosis of gas turbines.
分 类 号:TK39[动力工程及工程热物理—热能工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.30