检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]西安科技大学计算机系,陕西西安710054 [2]西安交通大学计算机系
出 处:《系统工程理论与实践》2004年第6期67-71,共5页Systems Engineering-Theory & Practice
基 金:陕西省科学技术发展计划"十五"攻关资助(2000K08-G12)
摘 要: 提出一种基于奇异值分解最小二乘法的自适应局部线性化预测方法.它要求数据矩阵的条件数不大于给定阈值,并据此自适应地确定当前相空间的维数,然后根据新的嵌入维数重构数据矩阵,进行模型的参数估计和计算当前预测值.实验结果说明所提方法精度高且稳健.特别是当嵌入维数接近最邻近向量的数目时,其性能显著优于普通局部线性化方法.Local linear is a well-known method for prediction chaotic time series. there are two shortages: Robustness of the method is poor; it is difficult to determine the embedding dimensions. An adaptive local linear method is proposed, which based on singular value decomposition. The method can determine the crisp embedding dimension adaptively according to singular values of data matrixes, then the new data matrixes are reconstructed, and the parameters of the models are estimated, finally, crisp prediction value is estimated. Noisy Lorenz time series and stock price movements time series are employed to compare proposed approach with original local linear method respectively. Experimental results show that proposed approach is robust, and possessed higher prediction precision than that of original local linear, especially in situations where the selected embedding dimension is close to the number of the nearest neighbors.
关 键 词:混沌时间序列 局部线性化 预测 预报 奇异值分解
分 类 号:TP13[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.18.105.157