自适应局部线性化法预测混沌时间序列  被引量:9

Adaptive Local Linear Predicting Chaotic Time Series

在线阅读下载全文

作  者:李爱国[1] 覃征[2] 

机构地区:[1]西安科技大学计算机系,陕西西安710054 [2]西安交通大学计算机系

出  处:《系统工程理论与实践》2004年第6期67-71,共5页Systems Engineering-Theory & Practice

基  金:陕西省科学技术发展计划"十五"攻关资助(2000K08-G12)

摘  要: 提出一种基于奇异值分解最小二乘法的自适应局部线性化预测方法.它要求数据矩阵的条件数不大于给定阈值,并据此自适应地确定当前相空间的维数,然后根据新的嵌入维数重构数据矩阵,进行模型的参数估计和计算当前预测值.实验结果说明所提方法精度高且稳健.特别是当嵌入维数接近最邻近向量的数目时,其性能显著优于普通局部线性化方法.Local linear is a well-known method for prediction chaotic time series. there are two shortages: Robustness of the method is poor; it is difficult to determine the embedding dimensions. An adaptive local linear method is proposed, which based on singular value decomposition. The method can determine the crisp embedding dimension adaptively according to singular values of data matrixes, then the new data matrixes are reconstructed, and the parameters of the models are estimated, finally, crisp prediction value is estimated. Noisy Lorenz time series and stock price movements time series are employed to compare proposed approach with original local linear method respectively. Experimental results show that proposed approach is robust, and possessed higher prediction precision than that of original local linear, especially in situations where the selected embedding dimension is close to the number of the nearest neighbors.

关 键 词:混沌时间序列 局部线性化 预测 预报 奇异值分解 

分 类 号:TP13[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象