检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]南京理工大学计算机科学与技术系,南京210094
出 处:《计算机工程与应用》2004年第21期72-74,152,共4页Computer Engineering and Applications
基 金:江苏省自然科学基金项目(编号:BK2002001)资助
摘 要:该文在简要介绍形态学神经网络(MorphologicalNeuralNetwork,简称MNN)的基础上,提出了一种新型的模糊形态学神经网络,给出了其相应的模型。结合实例,比较了常见BP网络、形态学BP神经网络和模糊形态BP神经网络的训练结果和性能。实验结果表明,这种新型的神经网络具有较高的识别率和适应能力,同时此新型神经网络的提出丰富了神经网络模糊技术的研究。In this paper,we firstly introduce the basic concepts of morphological neural networks(MNN)and then present a novel class of neural networks,called fuzzy morphological neural networks(FMNN).Our experimental results demonstrate that FMNN outperforms BP neural networks and has comparable performance with MNN.The work here enriches neuro-fuzzy technologies.
分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222