Responses of chlorophyll fluorescence and nitrogen level of Leymus chinensis seedling to changes of soil moisture and temperature  被引量:4

Responses of chlorophyll fluorescence and nitrogen level of Leymus chinensis seedling to changes of soil moisture and temperature

在线阅读下载全文

作  者:XUZhen-zhu ZHOUGuang-sheng LIHui 

机构地区:[1]LaboratoryofQuantitativeVegetationEcology,InstituteofBotany,ChineseAcademyofSciences,Beijing100093,China

出  处:《Journal of Environmental Sciences》2004年第4期666-669,共4页环境科学学报(英文版)

基  金:TheNationalKeyBasicResearchSpecialProject(No.G1999043407),theKeyProjectofChineseAcademyofSciences(No.KZCXISW0112,KSCX2107)andtheNationalNaturalScienceFoundationofChina(No.40231018,30070642,30028001,49905005,39730110)

摘  要:Controlled experiment of Leymus chinensis seedlings grown in the environmental growth chambers at 3 soil moisture levels and 3 temperature levels was conducted in order to improve the understanding how leaf photosynthetic parameters will respond to climatic change. The results indicated that soil drought and high temperature decreased the photochemical efficiency of photosystem(F v/F m), the overall photochemical quantum yield of PSII(yield), the coefficient of photochemical fluorescence quenching(q\-P), but increased the coefficient of non-photochemical fluorescence quenching(q\-N). Severe soil drought would decrease F v/F m and yield by 3.12% and 37.04% under 26℃ condition, respectively, and 6.60% and 73.33% under 32℃ condition, respectively, suggesting that higher temperature may enhance the negative effects of soil drought. All the soil drought treatments resulted in the decline in leaf nitrogen content. There was no significant effect of temperature on leaf nitrogen level, but higher temperature significantly reduced the root nitrogen content and the ratio of root nitrogen to leaf nitrogen, indicating the different strategies of adaptation to soil drought and temperature. It was also implied that higher temperature would enhance the effect of soil drought on leaf photosynthetic capacity, decrease the adaptability of Leymus chinensis to drought.Controlled experiment of Leymus chinensis seedlings grown in the environmental growth chambers at 3 soil moisture levels and 3 temperature levels was conducted in order to improve the understanding how leaf photosynthetic parameters will respond to climatic change. The results indicated that soil drought and high temperature decreased the photochemical efficiency of photosystem(F v/F m), the overall photochemical quantum yield of PSII(yield), the coefficient of photochemical fluorescence quenching(q\-P), but increased the coefficient of non-photochemical fluorescence quenching(q\-N). Severe soil drought would decrease F v/F m and yield by 3.12% and 37.04% under 26℃ condition, respectively, and 6.60% and 73.33% under 32℃ condition, respectively, suggesting that higher temperature may enhance the negative effects of soil drought. All the soil drought treatments resulted in the decline in leaf nitrogen content. There was no significant effect of temperature on leaf nitrogen level, but higher temperature significantly reduced the root nitrogen content and the ratio of root nitrogen to leaf nitrogen, indicating the different strategies of adaptation to soil drought and temperature. It was also implied that higher temperature would enhance the effect of soil drought on leaf photosynthetic capacity, decrease the adaptability of Leymus chinensis to drought.

关 键 词:chlorophyll fluorescence nitrogen level Leymus chinensis soil moisture soil temperature 

分 类 号:X173[环境科学与工程—环境科学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象