基于观测器的非线性系统神经网络鲁棒控制  被引量:2

Observer-based neural networks robust control for a class of nonlinear system

在线阅读下载全文

作  者:齐国元[1,2] 陈增强[1,2] 袁著祉 

机构地区:[1]天津科技大学自动化系,天津300222 [2]南开大学自动化系,天津300071

出  处:《控制与决策》2004年第9期1050-1053,共4页Control and Decision

基  金:国家自然科学基金资助项目(60174021;60374037);南开大学创新基金资助项目.

摘  要:提出一类不依赖于模型的状态观测器,通过分析其根轨迹和极点要求配置合适的参数,该观测器本身是一个能提取高阶微分的高阶微分器.基于Lyapunov稳定性理论设计了使闭环系统渐近稳定,对模型变化和扰动具有鲁棒性的神经网络自适应控制器.该控制器不仅考虑了闭环系统的输出和设定输入误差的微分,而且考虑了误差的高阶微分,从而提高了控制品质.最后通过仿真例子验证了所提出理论的正确性.A differential state observer that does not rely on the model is presented. Its parameters are distributed through analyzing its root-locus and pole requirements. The observer itself is a high order differentiator that is able to extract the high order differential. Based on Lyapunov stability theory, an adaptive neural networks controller is designed, which makes the closed-loop system asymptotically stable and robust for changing of the model and the disturbance of the plant. The controller not only considers differential of the errors between the output and the given input but also considers high orders differentials of the errors, thus the control quality is improved. The simulation examples show the effectiveness of the method.

关 键 词:非线性系统 神经网络 微分状态观测器 自适应鲁棒控制器 

分 类 号:TP273[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象