检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:季天剑[1] 黄晓明[1] 刘清泉[2] 唐国奇[2]
机构地区:[1]东南大学交通学院,江苏南京210096 [2]交通部公路科学研究所,北京100088
出 处:《交通运输工程学报》2004年第3期1-3,共3页Journal of Traffic and Transportation Engineering
基 金:国家西部交通建设科技项目(200131822332)
摘 要:针对道路表面的坡面水流受降雨和坡面粗糙程度的影响,是一个高度非线性空间分布的过程,一般模型很难精确描述。建立了基于人工神经网络的道路表面水膜厚度预测模型,以降雨强度、坡度、坡长和坡面的粗糙程度为输入层,水膜厚度为输出层,隐含层为6个神经元,通过试验数据的训练,确定了网络的权重和阈值。应用结果表明该模型预测的水膜厚度与测量值的相关系数为0 98,误差平方和为3 08,这说明该模型用于道路表面水膜厚度预估是可行的。Rainfall and slope rough degree have great effect on rain water depth on road surface, and their relation is highly nonlinear, it can not be described by simple models. This paper used artificial neural network to establish the prediction model of water film thickness. Input layers of the model were rainfall intensity, gradient, slope length and contexture depth of road, output layer was rain water depth, there were 6 neural cells in hidden layer. The weights and thresholds of the model were attained through training neural network with testing data. Applied results show that the relative coefficient of predictive values and measure values is 0. 98, error is 3. 08. The result indicates that the predictive model is reasonable.
分 类 号:U416.2[交通运输工程—道路与铁道工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.36