检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]安徽工程科技学院计算机科学与工程系,芜湖241000 [2]东南大学计算机科学与工程系,南京210096
出 处:《东南大学学报(自然科学版)》2004年第5期604-608,共5页Journal of Southeast University:Natural Science Edition
基 金:国家自然科学基金资助项目 (70 3 710 15 );安徽省自然科学基金资助项目 (0 3 0 42 2 0 5 ) .
摘 要:传统的基于粗集的属性约简须计算差别矩阵并生成大量的条件属性类 ,效率低 ,且很多算法还不完备 .为此 ,本文引入分类关联规则和相容分类关联规则的概念 ,给出基于分类关联规则的求解下近似和正区域的等价方法 ,从而提出基于分类关联规则的属性约简模型和算法 ,该模型将属性约简问题转化为求解一类特殊的分类关联规则集的问题 ,因而使得相应的算法可有效地改进属性约简挖掘效率 ,克服传统算法依赖于主存的限制 ,为属性约简提供了一种新的框架 .理论分析表明该算法是有效且可行的 .Conventional algorithms for attributes reduction based on rough sets need to compute the time-consuming discrimination matrix and generate lots of attribute classes, thus they are of low efficiency. Moreover, many algorithms are incomplete. In this paper, the concepts of classified association rules and compatible classified association rules are introduced, and equivalent models based on classified association rules for computing lower approximation and positive region are proposed. Furthermore, this paper gives a novel model and a complete algorithm-EAMAR (efficient algorithm for minimal attributes reduction) for attributes reduction. The model only needs to mine a set of special classified association rules instead of generating lots of attribute classes, so it can effectively overcome the limitation of main memory and solve the problem of time consuming. Therefore, EAMAR provides a new framework for attributes reduction. Theoretical analysis results show that EAMAR is effective and efficient.
分 类 号:TP311[自动化与计算机技术—计算机软件与理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.188