检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]中国海洋大学,山东青岛266003
出 处:《中国海洋大学学报(自然科学版)》2004年第5期704-712,共9页Periodical of Ocean University of China
基 金:国家重点基础研究发展规划项目 (G1 9990 4 380 9) ;国家自然科学基金项目 40 0 760 0 3) ;教育部优秀青年教师资助计划项目 (2 0 0 1 39)资助
摘 要:对已有根据观测提出的幂函数形式风浪成长关系进行了分析。发现这些风浪成长关系在消去无因次风区后一致地与 3 /2指数律相协调 ,尽管它们原来存在较大的不协调性。发现Jeffreys ,Sverdrup和Munk以及Plant的风能输入源函数在谱积分意义下具有相似性 ,而Tsikunov ,Hasselmann和Phillips的破波耗散源函数在谱积分意义下也具有相似性 ,尽管这些源函数的原始形式和物理背景显著地不同。利用有效波能量平衡方程 ,将 3 /2指数律和发现的风能输入及破波耗散源函数相似性相结合 ,提出了深水风浪随风区成长的分式指数律 ,以得到的分式指数律拟合已有基于观测提出的风浪成长关系提出了半经验的风浪成长关系 ,与已有观测数据符合。The existing wind wave growth formulas (WWGFs) in the form of power function, which were presented on the basis of measurements, are analyzed. It is shown that these WWGFs after eliminating the fetch are uniformly consistent with the 3/2 power law, though there are considerable discrepancy among them.It is found that there are similarities in terms of spectral integral among the wind input source terms given by Jeffreys, Sverdrup and Munk, and Plant and among the wave breaking dissipation source terms given by Tsikunov,Hasselmann and Philips,although the original forms and the physical considerations of these source terms are significantly different. A fractional fetch power law for wind wave growth in deep water is presented by combining the energy balance equation for significant waves with the observed similarities and the 3/2 power law. Semi-empirical WWGFs have been proposed by fitting the existing WWGFs with the derived fetch law. The proposed formulas are agreeably consistent with the available observational data.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.104