检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]浙江大学工业控制技术国家重点实验室,系统工程研究所,浙江杭州310027
出 处:《化工学报》2004年第9期1546-1549,共4页CIESC Journal
基 金:国家高技术研究发展计划资助 (No 863 5 11 92 0 0 11;No 2 0 0 1AA4112 3 0 )~~
摘 要:Dynamic principal component analysis(DPCA) is an extension of conventional principal component analysis(PCA) for dealing with multivariate dynamic data serially correlated in time.Based on the fact that the measured variables in relation to chunk monitoring of the industrial fluidized-bed reactor are highly cross-correlated and auto-correlated, this paper presents a practical strategy for chunk monitoring by adopting DPCA in order to overcome the shortcomings of the conventional method.After introducing the basic principle of DPCA, both how to determine the time lagged length of data matrix and how to calculate the nonparametric control limits when the dynamic data are not subject to the assumption of independently identically distribution(IID) were discussed.An appropriate DPCA model based on the real data from a industrial fluidized-bed reactor was built, with parallel analysis and empirical reference distribution(ERD)method to select time lagged length and control limits, respectively.During data pretreatment, data smoothing was used to reduce noise and the serial correlations to some degree.The simulation test results showed the effectiveness of the DPCA based method.Dynamic principal component analysis (DPCA) is an extension of conventional principal component analysis (PCA) for dealing with multivariate dynamic data serially correlated in time. Based on the fact that the measured variables in relation to chunk monitoring of the industrial fluidized-bed reactor are highly cross-correlated and auto-correlated, this paper presented a practical strategy for chunk monitoring by adopting DPCA in order to overcome the shortcomings of the conventional method. After introducing the basic principle of DPCA, both how to determine the time lagged length of data matrix and how to calculate the nonparametric control limits when the dynamic data are not subject to the assumption of independently identically distribution (IID) were discussed. An appropriate DPCA model based on the real data from a industrial fluidized-bed reactor was built, with parallel analysis and empirical reference distribution (ERD) method to select time lagged length and control limits, respectively. During data pretreatment, data smoothing was used to reduce noise and the serial correlations to some degree. The simulation test results showed the effectiveness of the DPCA based method.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.75