检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:廖广兰[1] 李巍华[1] 史铁林[1] 陈勇辉[1]
机构地区:[1]华中科技大学机械科学与工程学院,武汉430074
出 处:《机械工程学报》2003年第12期99-102,共4页Journal of Mechanical Engineering
基 金:国家自然科学基金(50205009);湖北省自然科学基金(2000J125)
摘 要:提出了一种自组织映射网络训练结果的可视化方法——距离映射祛,该方法通过计算出竞争层神经元权矢量与输入模式的相似度,并综合考虑神经元的网格分布,把输入矢量降维映射到二维平面。结合该方法研究了自组织映射网络在齿轮箱故障识别和状态监测中的应用。与U—矩阵法相比,该方法能更加清楚地将齿轮正常、裂纹和断齿状态的特征数据映射到二维平面的不同区域,将齿轮箱状态聚类分开,特征数据在平面上的映像点轨迹变化趋势直观反映了齿轮箱工作状态的变化,便于及时监测识别出齿轮的早期故障及其变化趋势。A new method, distance mapping, is presented in order to visualize the trained results by self-organizing maps (SOM) apparently. By means of similarities evaluated based on Euclidean distances between input vectors and output neurons weights combining with the distribution of fixed lattices in the network, high-dimensional input vectors are projected into a two-dimensional space. SOM is employed in fault recognition and condition monitoring of gearbox combining with the proposed visualizing technique. It is proved that feature points under gear normal, tooth cracked and tooth broken conditions are mapped into different areas on two-dimensional space more clearly by distance mapping than U-matrix method, which helps distinguish gearbox conditions correctly. With the trace of the image points for gear feature data on the plane, the variation of gearbox conditions is observed visually, and furthermore, early gear failures occurrence and its varying trend is monitored in time.
关 键 词:自组织映射 可视化 U—矩阵 距离映射法 状态监测 齿轮箱
分 类 号:TH132.41[机械工程—机械制造及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.143