检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:姚炳学[1]
机构地区:[1]聊城大学数学与系统科学系,山东聊城252059
出 处:《吉首大学学报(自然科学版)》2003年第2期23-25,34,共4页Journal of Jishou University(Natural Sciences Edition)
基 金:山东省自然科学基金资助项目(Y2000A05)
摘 要:在(∈,∈∨q)-模糊子群的基础上,引入了(∈,∈∨q)-模糊正规化子与(∈,∈∨q)-模糊中心化子的概念,并讨论了它们的一些性质.同时,给出了(∈,∈∨q)-模糊商群与(∈,∈∨q)-模糊商子群的定义,建立了(∈,∈∨q)-模糊商群的同构定理.Based on the concept of (∈,∈∨q)-fuzzy subgroup introduced by S.K.Bhakat in 1992,the notions of (∈,∈∨q)- fuzzy normalizer and (∈,∈∨q)-fuzzy centralizer are introduced.Some properties of (∈,∈∨q)-fuzzy normalizer and (∈,∈∨q)- fuzzy centralizer are discussed.Then,the definition of(∈,∈∨q)- fuzzy quotient group and (∈,∈∨q)-fuzzy quotient subgroup is given.At last,the isomorphism theorem for (∈,∈∨q)-fuzzy quotient group is established.The main results include:(1)if is a fuzzy subset of,then the (∈,∈∨q)-fuzzy normalizer of is a subgroup of;(2)if is a fuzzy subgroup of,then the (∈,∈∨q)-fuzzy centralizer of is a subgroup of and a normal subgroup of;(3)if and are (∈,∈∨q)-fuzzy normal subgroup and (∈,∈∨q)-fuzzy subgroup of,respectively,then is a (∈,∈∨q)-fuzzy subgroup of.
关 键 词:(∈ ∈∨q)-模糊子群 (∈ ∈∨q)-模糊正规化子 (∈ ∈∨q)-模糊中心化子 (∈ ∈∨q)-模糊商群 (∈ ∈∨q)-模糊商子群 模糊子集 模糊数学
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.30