检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:熊熊[1] 张维[1] 任达[1] 任昆[1] 安瑛晖[1]
机构地区:[1]天津大学管理学院,天津300072
出 处:《系统工程学报》2004年第5期532-537,共6页Journal of Systems Engineering
基 金:国家自然科学基金95重大资助项目课题(79790130);天津市自然科学基金资助项目(023600411);管理学院青年科研基金资助项目.
摘 要:商业银行非现场监管在整个商业银行监管体系中占有中枢神经的地位.文章将商业银行非现场监管作为模式识别分类问题进行研究,提出了通过神经网络的建模,构造基于马哈拉诺比斯距离的联合判别模型的方法.并以实际数据为基础验证了模型的有效性,进行了商业银行分类识别.The off-site banking regulation system plays a key role in the entire banking regulation system. In this paper, we regard the off-site regulation as a kind of pattern recognition problem, and a new model based on neural network and Mahalanobiz distance discriminant analysis is presented. Using this model, we classified commercial bank from the practical data. In the model, the input vector is regulation indexes. The model training is carried on through BP arithmetic and Mahalanobiz distance discriminant analysis in order to reach a certain accurate rate. A new sample is the classes corresponding to neuron whose output vector has the minimal distance with the connection weight vector of neuron. The effectiveness of the proposed approach is clearly demonstrated by the experiment results.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.120